Saturation spaces for regularization methods in inverse problems

نویسندگان

  • Jean-Michel Loubes
  • Anne Vanhems
چکیده

The aim of this article is to characterize the saturation spaces that appear in inverse problems. Such spaces are defined for a regularization method and the rate of convergence of the estimation part of the inverse problem depends on their definition. Here we prove that it is possible to define these spaces as regularity spaces, independent of the choice of the approximation method. Moreover, this intrinsec definition enables us to provide minimax rate of convergence under such assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Saturation of Regularization Methods in Hilbert Spaces

We prove saturation of methods for solving ill-posed problems in Hilbert spaces for a wide class regularization methods. It turns out, that under a certain convexity assumption, saturation is necessary. We provide easy to verify assumptions, which allow to calculate the rate, at which saturation occurs.

متن کامل

Newton-type regularization methods for nonlinear inverse problems

Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

On Converse and Saturation Results for Tikhonov Regularization of Linear Ill-posed Problems

In this paper we prove some new converse and saturation results for Tikhonov regularization of linear ill-posed problems Tx = y, where T is a linear operator between two Hilbert spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004